A cognitive approach for agent-based personalized recommendation
نویسندگان
چکیده
منابع مشابه
A cognitive approach for agent-based personalized recommendation
There is an increasing need for various e-service, e-commerce and e-business sites to provide personalized recommendations to on-line customers. This paper proposes a new type of personalized recommendation agents called fuzzy cognitive agents. Fuzzy cognitive agents are designed to give personalized suggestions based on the user’s current personal preferences, other user’s common preferences, ...
متن کاملOntology-based Approach for Mobile Personalized Recommendation
Mobile devices are in a widespread use today. Restricted by the features of mobile devices, such as mobility, low communication bandwidth, small capacity of memory, limited power and inconvenient interaction, mobile services are required to recommend items adapting to the user need and location. Much existing research on recommendations ignores semantic information of user dynamic historical pr...
متن کاملAgent-based architecture for context-aware and personalized event recommendation
In order to offer context-aware and personalized information, intelligent processing techniques are necessary. Different initiatives considering many contexts have been proposed, but users preferences need to be learned to offer contextualized and personalized services, products or information. Therefore, this paper proposes an agent-based architecture for context-aware and personalized event r...
متن کاملFuzzy Cognitive Agents for Personalized Recommendation
There is an increasing need for various web-service, e-commerce and e-business sites to provide personalized recommendations to on-line customers. This paper proposes a new type of personalized recommendation agents called fuzzy cognitive agents. Fuzzy cognitive agents are designed to give personalized suggestions based on the user’s current personal preferences, other user’s common preferences...
متن کاملPersonalized Opinion-Based Recommendation
E-commerce recommender systems seek out matches between customers and items in order to help customers discover more relevant and satisfying products and to increase the conversion rate of browsers to buyers. To do this, a recommender system must learn about the likes and dislikes of customers/users as well as the advantages and disadvantages (pros and cons) of products. Recently, the explosion...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Knowledge-Based Systems
سال: 2007
ISSN: 0950-7051
DOI: 10.1016/j.knosys.2006.06.006